
Optimizing an MPI Implementation to Increase CPU Availability

Ron Brightwell
�
, William Lawry†, Arthur. B. Maccabe†, and Christopher Wilson†

May 2002

Abstract

This paper describes how a new portable benchmark suite
that measures the ability of an MPI implementation to
overlap computation and communication can be used to
discover and diagnose performance problems. We present
the approach of the benchmark suite and discuss a perfor-
mance problem that it uncovered with the MPI implemen-
tation on the ASCI/Red supercomputer. A slight modifi-
cation to the MPI implementation has resulted in a sig-
nificant gain CPU availability and bandwidth with a slight
degradation in latency performance. We present a detailed
analysis of these results and discuss how the benchmark
suite has enabled us to tailor the MPI implementation to
optimize for all three measurements.

Keywords: System-area network, Message-passing, MPI,
Performance Analysis

1 Introduction

We have designed and implemented a portable benchmark
suite called COMB, the Communication Offload MPI-
based Benchmark, that measures the ability of an MPI
implementation to overlap computation and MPI commu-
nication. The ability to overlap is influenced by several
system characteristics, such as the quality of the MPI im-
plementation and the capabilities of the underlying net-
work transport layer. For example, some message passing
systems interrupt the host CPU to obtain resources from
the operating system in order to receive packets from the
network. This strategy is likely to adversely impact the

�
Corresponding author. R. Brightwell is with the Scalable Comput-

ing Systems Department, Sandia National Laboratories, P.O. Box 5800,
Albuquerque, NM, 87111-1110, bright@cs.sandia.gov. Sandia is a mul-
tiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy under contract
DE-AC04-94AL85000.

†W. Lawry, C. Wilson, and A. B. Maccabe are with the Computer
Science Department, The University of New Mexico, Albuquerque, NM,
87131,

�
bill,riley,maccabe � @cs.unm.edu. This work was supported in

part through the Computer Science Research Institute (CSRI) at Sandia
National Laboratories under contract number SF-6432-CR.

utilization of the host CPU, but may allow for an increase
in MPI bandwidth.

During the initial development of the benchmark suite,
several runs were made on the ASCI/Red supercomputer.
Initially the runs were made to validate the results of the
suite on a tightly-coupled parallel platform. However, the
benchmark suite revealed a subtle but significant perfor-
mance problem with the MPI implementation. In relat-
ing these results and a subsequent change to the imple-
mentation to correct the problem, we demonstrate that the
benchmark suite can provide greater insight into the rela-
tionship between network performance and CPU perfor-
mance.

The rest of this paper is organized as follows. Section
2 describes the benchmark suite. In Section 3, we provide
an overview of the hardware and software environment of
the ASCI/Red supercomputer. Section 4 presents initial
results from the benchmark suite and describes the perfor-
mance problem that was revealed. This section continues
by describing a small MPI enhancement and the resulting
performance impact. Section 5 discusses the conclusions
of this paper and we conclude in 6 with a discussion of
future work.

2 The COMB Benchmark Suite

The COMB benchmark suite consists of two different
methods for measuring the performance of a system, each
with a different perspective on characterizing the ability
to overlap computation and MPI communication. This
multi-method approach captures performance data on a
wider range of the system and allows for results from each
benchmark to be validated and/or reinforced by the other.
The first method, the Polling Method, allows for the max-
imum possible overlap of computation and MPI commu-
nication. The second method, the Post-Work-Wait Method
tests for overlap under practical restrictions on MPI calls.
Since the polling method did not reveal any performance
problems relative to this study, we only describe the Post-
Work-Wait method in detail. For a complete description
of both benchmarks, see[4].

1

2.1 Post-Work-Wait Method

The Post-Work-Wait Method mixes MPI communication
and computation in a serial manner: post non-blocking
MPI messages, perform computation (the work phase),
and wait for the messages to complete. This strict order
introduces a significant and reasonable restriction at the
application level: the underlying communication system
can overlap MPI communication and computation only if,
after the initial MPI calls, the message passing system re-
quires no further intervention by the application in order
to progress communication. We define the term applica-
tion offload to describe this capability. The PWW method
detects whether systems exhibit application offload and
identifies where host cycles are spent on communication.

Figure 1 presents a pictorial representation of the
method. With respect to communication, the PWW
method performs message handling in a repeated pair of
operations: 1) posting non-blocking send and receive calls
and 2) wait for the messaging to complete. Both pro-
cesses simultaneously send and receive a single message.
The worker process performs work after the non-blocking
calls before waiting for message completion. The work
interval is varied to effect changes in CPU availability and
bandwidth.

T

T

work
interval

T time stamp
Timing Node

Po
st

−
W

or
k−

W
ai

t

Support Node

Messaging

Pre−Post

Wait

W
or

k

T

T

Figure 1: Post-Work-Wait Method

The PWW method collects wall clock durations for the
different phases of the method. Specifically, the method
collects individual durations for i) the non-blocking call
phase, ii) the work phase, and iii) the wait phase. Of
course, the method also records the time necessary to do
the work in the absence of messaging. These phase dura-
tions are useful in identifying communication bottle necks
or other causes of poor communication.

3 Sandia/Intel ASCI/Red Machine

The Sandia/Intel ASCI/Red machine [5] is the Depart-
ment of Energy’s Accelerated Strategic Computing Initia-
tive (ASCI) Option Red machine. It was installed at San-
dia National Laboratories in 1997 and was the first com-
puting system to demonstrate a sustained teraFLOPS level

of performance. The following briefly describes the hard-
ware and system software environment of the machine.
See [] for a more detailed description.

3.1 Hardware

ASCI/Red is composed of more than nine thousand 333
MHz Pentium II Xeon processors connected by a network
capable of delivering 400 MB/s unidirectional communi-
cation bandwidth. Each compute node contains two pro-
cessors and 256 MB of main memory. Each compute node
also has a network interface chip (NIC) that resides on the
memory bus, allowing for low-latency access to the net-
work.

3.2 Software

The compute nodes of ASCI/Red run a variant of a
lightweight kernel, called Puma [6], that was designed
and developed by Sandia and the University of New Mex-
ico. A key component of the design of Puma is a high-
performance data movement layer called Portals.

Portals in Puma are data structures in an application’s
address space that determine how the kernel should re-
spond to message-passing events. Portals allow the ker-
nel to deliver messages directly to the application without
any intervention by the application process. In particular,
the application process need not be the currently sched-
uled process or perform any message selection operations,
such as tag matching, to process incoming messages. We
refer to this feature as application offload, since the appli-
cation need not be involved in the transfer of data once the
operation has been set up.

In Puma, all of the resources on a compute node are
managed by the system processor. This is the only pro-
cessor that performs any significant processing in supervi-
sor mode. The remaining processor runs application code
and only rarely enters supervisor mode. This processor
is called the user processor. This arrangement produces
a slight asymmetry in the performance of the processors,
but it greatly simplifies the structure of the Puma kernel
and maximizes the processor cycles available to the appli-
cations.

3.3 Processor Modes

Puma supports four different modes that allow different
distributions of application processes on the processors.
The processor mode is determined at run-time for the pro-
cesses in a parallel job when the job is launched. The
following describes each of these processor modes.

The simplest processor usage mode is to run both the
kernel and application process on the system processor.
This mode is commonly referred to as “heater mode”

since the second processor is not used and only generates
heat. In this mode, the kernel runs only when responding
to network events or in response to a system call from the
application process. This mode does not offer any signifi-
cant performance advantages to the application process.

In the second mode, message co-processor mode, the
kernel runs on the system processor and the application
process runs on the user processor. When the processors
are configured in this mode, the kernel runs continuously
waiting to process events from external devices or service
system call requests from the application process. Be-
cause the time to transition from user mode, to supervisor
mode, and back to user mode can be significant, this mode
offers the advantage of reduced network latency and faster
system call response time. Because of the increased mes-
sage passing performance, this mode favors applications
that are latency bound.

In the third mode, compute co-processor mode, the sys-
tem processor and user processor both run the kernel and
an application process. However, the kernel code run-
ning on the application processor does not perform any
resource management activities, it simplify notifies the
system processor when a system call is performed. The
advantage of this mode is that it provides more processor
cycles for the application. However, the two processors
are not symmetric since the part of the application run-
ning on the shared system processor will not progress as
rapidly as the portion of the application running on the
dedicated user processor. In order to use this mode, the
application must be use a non-standard library interface
that executes a co-routine on the application processor.
Because of the opportunity to utilize both processors, this
mode favors applications that are compute bound.

Finally, in the fourth mode, known as virtual node
mode, the system processor runs both the kernel and an
application process, while the second processor also runs
the kernel and a full separate application process. This
mode essentially allows a compute node to be viewed by
the runtime system as two independent compute nodes.
The asymmetry of compute co-processor mode also ex-
ists in this mode, so the application process running on
the user processor is likely to receive slightly more pro-
cessor cycles than the application process running with
the kernel on the system processor. This mode allows ap-
plications to avail of the user processor more easily, since
the application does not need to be modified to use the
non-standard co-routine interface.

In the remainder of this paper, we restrict our discussion
to a comparison between standard mode (proc mode 0)
and message co-processor mode (proc mode 1).

3.4 MPI Implementation

The MPI library for Puma Portals on ASCI/Red [1] is a
port of the MPICH [3] implementation version 1.0.12.
This implementation of MPI was validated as a product
by Intel for ASCI/Red in 1997 after significant testing and
has been in production use with few changes since.

The performance of the MPI implementation on
ASCI/Red was studied [2] using traditional ping-pong la-
tency and bandwidth tests. In comparison to the perfor-
mance of the underlying Portals layer, MPI was shown to
nominally increase latency and was able to achieve nearly
identical bandwidth performance in both standard pro-
cessor mode and message co-processor mode. Figure 2
shows the MPI half round trip latency performance for the
standard mode (proc0) and message co-processor mode
(proc1). Figure 3 shows the MPI bandwidth numbers for
these processor modes.

0

5

10

15

20

25

0 50 100 150 200 250

T
im

e
(m

ic
ro

se
co

nd
s)

Message Size (bytes)

Proc0
Proc1

Figure 2: MPI Half Round-Trip Latency

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Proc0
Proc1

Figure 3: MPI Ping-Pong Bandwidth

4 COMB Results and Analysis

Because the results obtained using the ping-pong bench-
mark in 1997 did not uncover any unexpected perfor-
mance issues, we turned our efforts to other projects. One
of those projects involved the development of the COMB
suite. The intent of the COMB suite was to evaluate the
ability of MPI implementations to overlap computation
with communication on high-end clusters, in particular
systems built with programmable network interface cards
like Myrinet or the Alteon Acenic Gigabit Ethernet cards.
On a whim, we thought it would be interesting to run the
benchmarks contained in the COMB suite on ASCI/Red.

In this section we describe the performance problem
that the PWW method revealed, how the MPI implemen-
tation was modified, and show the impact of this change
on the performance of all of the benchmarks, including
latency and bandwidth.

4.1 Initial Results

Figure 4 presents the bandwidth as a function of the work
interval for 100 KB messages. This figure includes sepa-
rate graphs for both processor modes. Given the differ-
ences in how bandwidth is measured in the PWW and
ping-pong benchmarks, the results presented in Figure 4
are consistent with the earlier results presented in Fig-
ure 3.

 0

 50

 100

 150

 200

 250

 300

 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Work Interval (loop iterations)

Proc0
Proc1

Figure 4: MPI Bandwidth for 100KB Messages

In addition to bandwidth, the PWW benchmark reports
the processor availability during communication. In this
case, availability is reported as the ratio between the time
to complete the work interval with no communication
and the time to complete the work interval (and wait for
message completion) while communication is progress-
ing. Figure 5 shows CPU availability as a function of the
work interval for 100 KB messages on all three processor

modes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

C
P

U
 A

va
ila

bi
lit

y
(%

)

Work Interval (loop iterations)

Proc0
Proc1

Figure 5: CPU Availability for 100KB Messages

The general shape of the curves shown in Figure 5 re-
flects the PWW definition of availability. When the work
interval is relatively small, the work interval is too short
to cover the time needed to transmit the message. This
wait while delayed functionality suppresses apparent CPU
availability until the work interval becomes sufficiently
long to fill the delay period of time.

While the shape of the curves was expected, we were
surprised by the fact that there was no separation between
these curves. Given that message passing is entirely han-
dled by the system processor in message co-processor
mode, we had expected that the availability would be sig-
nificantly higher

Further analysis of the data provided by the PWW
benchmark identified the source of the problem. In par-
ticular, the PWW benchmark provides the time taken to
post each message. In message co-processor mode, we
would expect that the time to post a message would have
little or no dependence on the size of the message, since
the application process can make a request to the kernel
to start the transfer and then return to computation. How-
ever, when we looked that the posting times for various
message sizes, we saw that PWW was reporting a direct
relationship between the post time and the length of the
message. Figure 6 shows the post time for four mes-
sage sizes across varying work intervals in message co-
processor mode.

The results in Figure 6 indicated that the MPI non-
blocking operations were waiting for the data transfer to
be completed before returning from the library. A quick
inspection of the MPI implementation confirmed that non-
blocking MPI send calls would trap to the kernel for the
data transfer request and then immediately wait for the
kernel to complete the transfer before returning from the
call. By doing this, the MPI library eliminates any possi-

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000 100000 1e+06 1e+07

T
im

e
T

o
P

os
t (

us
)

Work Interval (loop iterations)

5KB
50KB

100KB
500KB

Figure 6: Time to Post in Message Co-Processor Mode

bility of overlapping computation with sending messages.
This limitation does not have any effect in standard

mode, since the kernel must complete the data transfer
before returning control the application process anyway.
The standard ping-pong benchmark used to measure la-
tency and bandwidth does not reveal this problem either,
since it only evaluates network performance and does not
consider processor overhead. For these reasons, the loss
of opportunity to overlap in message co-processor mode
went undetected.

4.2 MPI Enhancement

The MPI implementation was modified to return imme-
diately after making a send request to the kernel. This
change involved moving the structure that indicates send
completion from the local stack into the send request
structure. Rather than waiting for completion of the send
immediately after making the request, the MPI implemen-
tation checks or waits for completion in the MPI Test() or
MPI Wait() family of functions. In message co-processor
mode, this gives the kernel an opportunity to transfer the
data while the application process continues computing.

4.3 Impact of the Change

We now present several results that show the impact of
this small change on latency, bandwidth, overhead, and
CPU availability for the different processor modes in
Puma. In some cases, this enhancement led to significant
gains in performance.

Figure 7 presents the processor availability graph for
using the modified MPI implementation. We now see
the improvement in processor availability for message co-
processor mode that we had expected to see.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

C
P

U
 A

va
ila

bi
lit

y
(%

)

Work Interval (loop iterations)

Proc0
Proc1

Figure 7: CPU Availability for 100KB Messages

Figure 8 compares the MPI half round trip latency per-
formance of the previous implementation with the new
implementation for both processor modes. The results are
mixed. For message co-processor mode, latency was im-
proved by about 1 µsec. However, in standard mode, the
new implementation is about 1 µsecworse.

0

5

10

15

20

25

0 50 100 150 200 250

T
im

e
(m

ic
ro

se
co

nd
s)

Message Size (bytes)

New Proc0
Old Proc0
Old Proc1

New Proc1

Figure 8: New MPI Half Round-Trip Latency

Figure 9 compares the MPI bandwidth performance of
the previous implementation with the new implementa-
tion. The numbers are nearly identical for both modes.
For standard mode, the performance of the new imple-
mentation exceeds the old one at around 3 KB. In message
co-processor mode, the numbers are virtually identical.

5 Conclusions

The PWW benchmark in the COMB suite was a valuable
tool that revealed a significant performance problem with
the MPI implementation on ASCI/Red. We believe this

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000 100000 120000

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Old Proc0
New Proc0
Old Proc1

New Proc1

Figure 9: New MPI Ping-Pong Bandwidth

benchmark to be a valuable tool in measuring message
passing performance relative to processor availability. We
have demonstrated its ability to expose and help diag-
nose performance problems that other traditional message
passing benchmarks do not.

6 Future Work

We intend to conduct a more in-depth analysis of this data
and other similar data that has been not been presented in
this paper. In particular, the PWW method has provided
some unexpected results that need to be explored in more
detail. We expect to make some more enhancements, pos-
sibly at the kernel-level, to help better understand the per-
formance data.

References

[1] R. B. Brightwell and P. L. Shuler. Design and imple-
mentation of MPI on Puma portals. In Proceedings of
the Second MPI Developer’s Conference, pages 18–
25, July 1996.

[2] Ron Brightwell and David S. Greenberg. Experi-
ences Implementating the MPI Standard on Sandia’s
Lightweight Kernels. Technical Report SAND97-
2519, Sandia National Laboratories, August 1997.

[3] William Gropp, Ewing Lusk, Nathan Doss, and An-
thony Skjellum. A high-performance, portable imple-
mentation of the MPI message passing interface stan-
dard. Parallel Computing, 22(6):789–828, September
1996.

[4] William Lawry, Christopher Wilson, Arthur B. Mac-
cabe, and Ron Brightwell. Comb: A portable bench-

mark suite for assessing mpi overlap. Technical Re-
port TR-CS-2002-13, Computer Science Department,
The University of New Mexico, April 2002.

[5] Sandia National Laboratories. ASCI Red, 1996.
http://www.sandia.gov/ASCI/TFLOP/Home_
Page.html.

[6] P. L. Shuler, C. Jong, R. E. Riesen, D. van Dresser,
A. B. Maccabe, L. A. Fisk, and T. M. Stallcup. The
Puma operating system for massively parallel com-
puters. In Proceedings of the 1995 Intel Supercom-
puter User’s Group Conference. Intel Supercomputer
User’s Group, 1995.

